Flow over a traveling wavy foil with a passively flapping flat plate.
نویسندگان
چکیده
Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.
منابع مشابه
Length effects of a built-in flapping flat plate on the flow over a traveling wavy foil.
Flow over the traveling wavy foil with a built-in rigid flapping plate at its trailing edge has been numerically studied using the multi-relaxation-time lattice Boltzmann method and immersed boundary method. The effect of the plate length on the propulsive performance such as the thrust force, energy consumption, and propeller efficiency has been investigated. Three modes (body force dominated,...
متن کاملNumerical study on the performance of a flapping foil power generator with a passively flapping flat plate
In this study, the flow characteristics of a flapping foil power generator with a passively flapping flat plate have been investigated using the lattice Boltzmann method (LBM) and immersed boundary method at Reynolds number of 1100 based on the chord length. The aim is to explore potential benefits of flow induced passive actuation of the flat plate tail to the power output and efficiency. The ...
متن کاملFluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer
The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
متن کاملLoading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method
The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...
متن کاملA Novel Similarity Solution of Turbulent Boundary Layer Flow over a Flat Plate
In this paper, the similarity solution of turbulent boundary layer flow on the flat plate with zero pressure gradients is presented. By employing similarity variables the governing partial differential equations are transformed to ordinary ones with inconsistent coefficients and solved numerically with the use of Runge–Kutta and shooting methods in conjunction with trial and error procedure. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2012